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Infroduction: applying Fast Wave power to Advanced

Tokamak regimes

* An important thrust in DIII-D b Baseline p=1.7 ]
program: Advanced Tokamak P - -
(AT) regimes with predominant 1-5:' ,,,,, ]

electron heating (ITER, reactor

relevant) 1op e !’/E/E/( ]
[ v AT B,=3.7 ]
e Principal role of Fast Wave (FW) 051 with 3 Mv%NFw_-

stem going forward: g -
>y 9 9 . I---é\é?;age GLF23 theory-based |
complement EC system in 0.0l fransport model

synergistic way o' - 5 B I10 15

Total electron heating power (MW)

 Key questions

- How much FW power can be coupled to these discharges
with existing system?

- What upgrades can be considered to increase coupled
FW power?
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Ovutline/summary

 Up to 1.5 MW of FW power successfully coupled to core of ELMing
H-mode discharges with g, ~ 2.5 with 7.5 MW of NBI + 1.5 MW of EC

 FW core electron heating efficiency similar to that of EC, as
expected with very good first-pass FW absorption on core
electrons (76%)

e Antenna loading in agreement with modeling using measured
edge density profiles

e Local D, puffing is studied as a means of increasing the loading
and hence the coupled power

e Gas puffing and other techniques to increase the antenna
loading are evaluated: effect on core plasma performance

* Projection of the coupled FW power levels towards 3 MW goal
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DIlI-D Fast Wave hardware

3 antenna arrays of two designs, located
in the 285/300 (60 MHz) and 0 deg and
180 deg (both 90 MHz in these experiments)
midplane ports

e 285/300 ~ 1 m wide, 0.5 m high
e 0deg, 180 deg ~ 0.8 m wide, 0.4 m high

e All three 4-element arrays operated in
90 degree toroidal phasing, using decoupler .

* 0, 180 deg use conventional tuning network,
while 285/300 uses tunerless arrangement;
both load-resilient at 90 deg phasing

* All three antennas operate up to ~20-25 kV peak system voltage - this
sets the limit of the total power that can be coupled for a given loading
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DIlI-D Fast Wave hardware

3 antenna arrays of two designs, located

in the 285/300 (60 MHz) and 0 deg and "’e%ggg

180 deg (both 90 MHz in these experiments) &

midplane ports 285/300 deg D J
!

e 285/300 ~ 1 m wide, 0.5 m high
e 0deg, 180 deg ~ 0.8 m wide, 0.4 m high

e All three 4-element arrays operated in
90 degree toroidal phasing, using decouple

* 0, 180 deg use conventional tuning network,
while 285/300 uses tunerless arrangement;
both load-resilient at 90 deg phasing

* All three antennas operate up to ~20-25 kV peak system voltage - this
sets the limit of the total power that can be coupled for a given loading

_J
R.l. Pinsker/RF Conference/June 2011

NATIONAL FUSION FACILITY
SAN DIEGO




FW core absorption efficiency similar to EC at 1.5 MW

level in Advanced Inductive discharge: 1, ~100%

141517

Comparison is T
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Why multi-pass absorption 1, ~100%: 76% first-pass absorption in

core, so multi-bounce edge losses should be smali

one-pass
<T’C0I’€ >
o n —
abs - -b
<772)ffe p““>+<n§c’];e 0””“> Shot 141517
time 3980.00
First-pass
. absorption \
* In Al discharges, FW on electrons:

approaches the ‘promised 76%
land’ of high first-pass
absorption

 Only ‘prompt’ edge losses
should be important in this
regime; cf. NSTX HHFW case
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How can first-pass absorption be so high? Answer:

significant n,, upshift of the whistler-like wave

141517 ray tracing at 3.98 s 141517 ray tracing at 3.98 s
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 Angle between group velocity and static magnetic field is ~20 degrees
(classic whistler characteristic)

* Ray path somewhat like resonance cone trajectory of slow wave in
LH regime
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To increase coupled FW power, antenna loading

in Al regime must be increased

P

coupled

 Coupled FW power at fixed antenna voltage scales directly
as loading resistance R,

* R determined by density profile adjacent to the antenna
surface and other edge parameters

* In AT regimes, confinement is also sensitive to edge
parameters

— If edge is changed to increase loading but confinement
significantly degraded by the change, no net gain

Goal: find techniques to enhance antenna loading with
acceptable effect on confinement
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“Natural” R, can be very small in high-confinement

regimes, as in Quiescent H-mode case from DIII-D

Density Profile From Reflectometer  DIII-D 141416@4305
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Loading increases exponentially as plasma/antenna gap is

reduced; upgraded limiters enable smaller gap, higher R,

Loading data in H-,L-mode
2"'|"'|"'|"'|"

e Surest way to raise R;: 3
reduce outer gap B S 5BS AL (Lmode)
. n —m -0 RL (H-mode)
g 15l u’..};,\, — =~ -0 RL (L-mode)
 DIII-D could not run gaps S |
< 6 cm with high power NBI o |
up to mid-2009 (overheating) T '
@)
]
 Replaced graphite limiter £ e
tiles with CFC (8/09) =
e Now run 4 cm outer gap or 05
smaller at ~8 MW of NBI Outer gap (cm)
successfully S
Dlll-grlillf:r:ode
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Price of too small outer gap in Al — precipitous drop in

rotation, confinement (ion channel?) at gap <4 cm
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* Subsequent experiments maintained at least 4 cm outer gap
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R, agrees with TOPICA code using measured edge
density profiles from reflectometers in L- and H-mode
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For detailed comparisons between TOPICA and experimental

data, full model of feed system, diagnostics was implemented

S21 , models

£ [S21] (dB) .- [ka

M ¥ ToOPICA
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< S21 (deg)
. 100
0 \
< S11 (deg) ~ioa ~
0 20 40 60 80 100 o 20 40 60 80 100
Frequency (MHz) Frequency (MHz)

* Example comparing measurements on the unloaded 285/300 antenna
and TOPICA:
- TOPICA gets the electrical properties of the strap right, underestimates
strap/strap coupling — but this appears to be due to an error in CAD
model of antenna, which is being corrected (6/11)
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Edge density profiles measured with reflectometers used in

TOPICA modeling of loading in gap scans in L- and H-mode

UCLA Reflectometer plus Thomson Loading comparison in L-mode
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 TOPICA in good agreement with data at large gap
e Rate of decay with gap is faster than simple expectation
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TOPICA predicts not only resistive loading, but also plasma-

induced changes in self- and mutual reactances of antennas

Reactive loading comparison

e Changes in self-reactance as 05—
gap is scanned in L-mode
predicted by TOPICA are . :
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Key coupling physics: what part of low loading in H-mode

is due to “index mismatching” effect vs. evanescence?

 Bilato, et al. showed that decay rate of R, as distance
of RHC to antenna should be slower than simplest
estimate based on vacuum evanescence

* Experiment seems to show significantly more rapid
decay rate with gap than even conservative simple
estimate

TOPICA decay rate is infermediate - not as rapid as
experiment, but more rapid than simple estimate

e Role of ‘index mismatching’ (or impedance matching)
effect is being evaluated
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Gas puffing increased loading by up to a factor

of six in some H-mode regimes

139714

* Gas puffing installed near 285/300 | , ] Photodiode
antennaq; used in Al experiments to
raise loading 0.6 “l ﬂ

* Increase of afactor of é inloading %)= —
between ELMs, from 0.17 Q to ~1 Q Ry, (285) (<)

* Costs: increased density, decrease 1 'H
in confinement (H98 from 1.1 t0 0.9) 0 I AL UYL |.

Density (107°)

* Far SOL density also can be Gas

increased without puffing by
adjusting shape (balance of
pumping, ELMs) 0L

Acceptable performance obtained | 1 Hosy?
at loading that will allow ~2.5 MW of 1.0
FW power with 65-70% first-pass ]

absorption on elecirons 2500 3000 3500 4000 4500

Time (ms)
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ORNL reflectometer used to study effect of local vs. global

puffing on edge density profile in ELMing H-mode
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ORNL reflectometer used to study effect of local vs. global

puffing on edge density profile in ELMing H-mode
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Extension of gas puffing experiments in 2011

* A key question for gas

puffing experiments to Gas puff in 2009-2010
control antenna loading: . o
what part of the effect is “ecy M
local vs. global? Lete,

. . 285/300 deg /

* To address this point, array D/
compare gas puffing near

antenna with remote puffing

yel
\’sef\ec‘o

R.l. Pinsker/RF Conference/June 2011




Extension of gas puffing experiments in 2011

Additional gas puff in 2011

A key question for gas

puffing experiments to Gas puff in 2009-2010
control antenna loading: . o
what part of the effect is °’°’e¢,f:<

local vs. global?
285/300 deg

* To address this point, array )/
compare gas puffing near
antenna with remote puffing

Add local puffing orifices at SOA
either side of both 0 deg et
and 180 deg arrays

e Experiment this summer

Additional gas puff in 2011
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Projection to 2011 experiments — higher FW power

will be coupled to Al/AT discharges

e Optimization of existing discharges already should
yield core coupled FW power ~2.5 MW at acceptable
voltage

 All three antennas have been moved to ~1 cm
smaller R

— At fixed outer gap, loading and power should
Increase by at least 20% from this change alone

 Technical improvements in arc detection/ELM
discrimination should allow further increase of power
in this regime

e Goal is demonstration of >3 MW of FW power coupled
to core of AT discharge in 2011
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Summary and conclusions

 Upto 1.5 MW of FW power successfully coupled to core of
ELMing H-mode discharges with g, ~ 2.5 with 7.5 MW NBI +
1.5 MW of EC

 FW core electron heating efficiency similar to that of EC, as
expected with very good first-pass FW absorption on core
electrons (76%), resulting from high g, and n,, upshift

 Antenna loading in agreement with modeling using
measured edge density profiles — detailed studies ongoing

* Local D, puffing can increase coupled power, but with
significant effects on performance

 Advanced regimes consistent with good performance found
that will allow ~2.5 MW of coupled FW power

* Incremental improvements should allow achievement of the
3 MW goalin 2011
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